Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Exp Physiol ; 109(1): 35-44, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37119460

RESUMO

Our objective was to evaluate an ex vivo muscle-nerve preparation used to study mechanosensory signalling by low threshold mechanosensory receptors (LTMRs). Specifically, we aimed to assess how well the ex vivo preparation represents in vivo firing behaviours of the three major LTMR subtypes of muscle primary sensory afferents, namely type Ia and II muscle spindle (MS) afferents and type Ib tendon organ afferents. Using published procedures for ex vivo study of LTMRs in mouse hindlimb muscles, we replicated earlier reports on afferent firing in response to conventional stretch paradigms applied to non-contracting, that is passive, muscle. Relative to in vivo studies, stretch-evoked firing for confirmed MS afferents in the ex vivo preparation was markedly reduced in firing rate and deficient in encoding dynamic features of muscle stretch. These deficiencies precluded conventional means of discriminating type Ia and II afferents. Muscle afferents, including confirmed Ib afferents were often indistinguishable based on their similar firing responses to the same physiologically relevant stretch paradigms. These observations raise uncertainty about conclusions drawn from earlier ex vivo studies that either attribute findings to specific afferent types or suggest an absence of treatment effects on dynamic firing. However, we found that replacing the recording solution with bicarbonate buffer resulted in afferent firing rates and profiles more like those seen in vivo. Improving representation of the distinctive sensory encoding properties in ex vivo muscle-nerve preparations will promote accuracy in assigning molecular markers and mechanisms to heterogeneous types of muscle mechanosensory neurons.


Assuntos
Fusos Musculares , Tendões , Camundongos , Animais , Fusos Musculares/fisiologia , Transdução de Sinais , Neurônios , Neurônios Aferentes/fisiologia
2.
Neuron ; 111(9): 1423-1439.e4, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36863345

RESUMO

Reduced survival motor neuron (SMN) protein triggers the motor neuron disease, spinal muscular atrophy (SMA). Restoring SMN prevents disease, but it is not known how neuromuscular function is preserved. We used model mice to map and identify an Hspa8G470R synaptic chaperone variant, which suppressed SMA. Expression of the variant in the severely affected mutant mice increased lifespan >10-fold, improved motor performance, and mitigated neuromuscular pathology. Mechanistically, Hspa8G470R altered SMN2 splicing and simultaneously stimulated formation of a tripartite chaperone complex, critical for synaptic homeostasis, by augmenting its interaction with other complex members. Concomitantly, synaptic vesicular SNARE complex formation, which relies on chaperone activity for sustained neuromuscular synaptic transmission, was found perturbed in SMA mice and patient-derived motor neurons and was restored in modified mutants. Identification of the Hspa8G470R SMA modifier implicates SMN in SNARE complex assembly and casts new light on how deficiency of the ubiquitous protein causes motor neuron disease.


Assuntos
Atrofia Muscular Espinal , Animais , Camundongos , Modelos Animais de Doenças , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Sinapses/metabolismo , Transmissão Sináptica , Fatores de Transcrição/metabolismo
3.
Exp Neurol ; 361: 114303, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36563835

RESUMO

It has long been accepted that myotonia (muscle stiffness) in patients with muscle channelopathies is due to myotonic discharges (involuntary firing of action potentials). In a previous study, we identified a novel phenomenon in myotonic muscle: development of plateau potentials, transient depolarizations to near -35 mV lasting for seconds to minutes. In the current study we examined whether plateau potentials contribute to myotonia. A recessive genetic model (ClCadr mice) with complete loss of muscle chloride channel (ClC-1) function was used to model severe myotonia congenita with complete loss of ClC-1 function and a pharmacologic model using anthracene-9-carboxylic acid (9 AC) was used to model milder myotonia congenita with incomplete loss of ClC-1 function. Simultaneous measurements of action potentials and myoplasmic Ca2+ from individual muscle fibers were compared to recordings of whole muscle force generation. In ClCadr muscle both myotonia and plateau potentials lasted 10s of seconds to minutes. During plateau potentials lasting 1-2 min, there was a gradual transition from high to low intracellular Ca2+, suggesting a transition in individual fibers from myotonia to flaccid paralysis in severe myotonia congenita. In 9 AC-treated muscles, both myotonia and plateau potentials lasted only a few seconds and Ca2+ remained elevated during the plateau potentials, suggesting plateau potentials contribute to myotonia without causing weakness. We propose, that in myotonic muscle, there is a novel state in which there is contraction in the absence of action potentials. This discovery provides a mechanism to explain reports of patients with myotonia who suffer from electrically silent muscle contraction lasting minutes.


Assuntos
Miotonia Congênita , Miotonia , Camundongos , Animais , Miotonia/genética , Miotonia Congênita/genética , Miotonia Congênita/tratamento farmacológico , Contração Muscular , Potenciais de Ação/fisiologia , Fibras Musculares Esqueléticas , Canais de Cloreto/genética , Modelos Animais de Doenças
5.
Adv Neurobiol ; 28: 111-130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36066823

RESUMO

The mammalian neuromuscular junction (NMJ) is an ideal preparation to study synaptic plasticity. Its simplicity- one input, one postsynaptic target- allows experimental manipulations and mechanistic analyses that are impossible at more complex synapses. Homeostatic synaptic plasticity attempts to maintain normal function in the face of perturbations in activity. At the NMJ, 3 aspects of activity are sensed to trigger 3 distinct mechanisms that contribute to homeostatic plasticity: Block of presynaptic action potentials triggers increased quantal size secondary to increased release of acetylcholine from vesicles. Simultaneous block of pre- and postsynaptic action potentials triggers an increase in the probability of vesicle release. Block of acetylcholine binding to acetylcholine receptors during spontaneous fusion of single vesicles triggers an increase in the number of releasable vesicles as well as increased motoneuron excitability. Understanding how the NMJ responds to perturbations of synaptic activity informs our understanding of its response to diverse neuromuscular diseases.


Assuntos
Acetilcolina , Junção Neuromuscular , Acetilcolina/metabolismo , Animais , Homeostase/fisiologia , Humanos , Mamíferos/metabolismo , Junção Neuromuscular/metabolismo , Plasticidade Neuronal , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
6.
Neuroscientist ; : 10738584221112336, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35904350

RESUMO

The idea that the nervous system maintains a set point of network activity and homeostatically returns to that set point in the face of dramatic disruption-during development, after injury, in pathologic states, and during sleep/wake cycles-is rapidly becoming accepted as a key plasticity behavior, placing it alongside long-term potentiation and depression. The dramatic growth in studies of homeostatic synaptic plasticity of miniature excitatory synaptic currents (mEPSCs) is attributable, in part, to the simple yet elegant mechanism of uniform multiplicative scaling proposed by Turrigiano and colleagues: that neurons sense their own activity and globally multiply the strength of every synapse by a single factor to return activity to the set point without altering established differences in synaptic weights. We have recently shown that for mEPSCs recorded from control and activity-blocked cultures of mouse cortical neurons, the synaptic scaling factor is not uniform but is close to 1 for the smallest mEPSC amplitudes and progressively increases as mEPSC amplitudes increase, which we term divergent scaling. Using insights gained from simulating uniform multiplicative scaling, we review evidence from published studies and conclude that divergent synaptic scaling is the norm rather than the exception. This conclusion has implications for hypotheses about the molecular mechanisms underlying synaptic scaling.

7.
Elife ; 112022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34985413

RESUMO

Excitation-contraction coupling (ECC) is the process by which electrical excitation of muscle is converted into force generation. Depolarization of skeletal muscle resting potential contributes to failure of ECC in diseases such as periodic paralysis, intensive care unit acquired weakness and possibly fatigue of muscle during vigorous exercise. When extracellular K+ is raised to depolarize the resting potential, failure of ECC occurs suddenly, over a narrow range of resting potentials. Simultaneous imaging of Ca2+ transients and recording of action potentials (APs) demonstrated failure to generate Ca2+ transients when APs peaked at potentials more negative than -30mV. An AP property that closely correlated with failure of the Ca2+ transient was the integral of AP voltage with respect to time. Simultaneous recording of Ca2+ transients and APs with electrodes separated by 1.6mm revealed AP conduction fails when APs peak below -21mV. We hypothesize propagation of APs and generation of Ca2+ transients are governed by distinct AP properties: AP conduction is governed by AP peak, whereas Ca2+ release from the sarcoplasmic reticulum is governed by AP integral. The reason distinct AP properties may govern distinct steps of ECC is the kinetics of the ion channels involved. Na channels, which govern propagation, have rapid kinetics and are insensitive to AP width (and thus AP integral) whereas Ca2+ release is governed by gating charge movement of Cav1.1 channels, which have slower kinetics such that Ca2+ release is sensitive to AP integral. The quantitative relationships established between resting potential, AP properties, AP conduction and Ca2+ transients provide the foundation for future studies of failure of ECC induced by depolarization of the resting potential.


Assuntos
Potenciais de Ação/fisiologia , Acoplamento Excitação-Contração , Potenciais da Membrana , Músculo Esquelético/fisiologia , Animais , Camundongos
8.
Neuroscientist ; 28(2): 103-120, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33345706

RESUMO

Both sepsis and treatment of cancer with chemotherapy are known to cause neurologic dysfunction. The primary defects seen in both groups of patients are neuropathy and encephalopathy; the underlying mechanisms are poorly understood. Analysis of preclinical models of these disparate conditions reveal similar defects in ion channel function contributing to peripheral neuropathy. The defects in ion channel function extend to the central nervous system where lower motoneurons are affected. In motoneurons the defect involves ion channels responsible for subthreshold currents that convert steady depolarization into repetitive firing. The inability to correctly translate depolarization into steady, repetitive firing has profound effects on motor function, and could be an important contributor to weakness and fatigue experienced by both groups of patients. The possibility that disruption of function, either instead of, or in addition to neurodegeneration, may underlie weakness and fatigue leads to a novel approach to therapy. Activation of serotonin (5HT) receptors in a rat model of sepsis restores the normal balance of subthreshold currents and normal motoneuron firing. If an imbalance of subthreshold currents also occurs in other central nervous system neurons, it could contribute to encephalopathy. We hypothesize that pharmacologically restoring the proper balance of subthreshold currents might provide effective therapy for both neuropathy and encephalopathy in patients recovering from sepsis or treatment with chemotherapy.


Assuntos
Encefalopatias , Doenças do Sistema Nervoso Periférico , Sepse , Potenciais de Ação/fisiologia , Animais , Fadiga , Humanos , Canais Iônicos , Neurônios Motores , Ratos , Sepse/complicações , Sepse/tratamento farmacológico
9.
Biochem Biophys Rep ; 28: 101182, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34926838

RESUMO

Huntington's disease (HD) causes neurological impairments, as well as muscle dysfunction, including smaller neuromuscular junctions (NMJs). This study assessed the expression levels of the subunits of the nicotinic acetylcholine receptor (nAChR) in muscles of the R6/2 mouse model of HD. Based on our previous findings of reduced NMJ size in R6/2 mice, it was hypothesized that muscles from R6/2 mice would also show an altered expression pattern of nAChR subunits compared to wild-type (WT) mice. Therefore, the mRNA levels of nAChR subunits were quantified in R6/2 and WT mouse muscles using qRT-PCR. Denervated muscles from WT mice served as positive controls for alterations in nAChR expression. Although some changes in nAChR subunit expression occurred in R6/2 muscles, the expression levels closely resembled WT. However, the expression of nAChR subunit-ε (Chrne) was significantly decreased in R6/2 muscles relative to WT. This study demonstrates that only minor changes in nAChR subunit expression occurs in R6/2 mouse muscles and that reduction in Chrne expression may be related to a reduction in NMJ size in R6/mice.

11.
Geroscience ; 43(3): 1265-1281, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33895959

RESUMO

Pathological age-related loss of skeletal muscle strength and mass contribute to impaired physical function in older adults. Factors that promote the development of these conditions remain incompletely understood, impeding development of effective and specific diagnostic and therapeutic approaches. Inconclusive evidence across species suggests disruption of action potential signal transmission at the neuromuscular junction (NMJ), the crucial connection between the nervous and muscular systems, as a possible contributor to age-related muscle dysfunction. Here we investigated age-related loss of NMJ function using clinically relevant, electrophysiological measures (single-fiber electromyography (SFEMG) and repetitive nerve stimulation (RNS)) in aged (26 months) versus young (6 months) F344 rats. Measures of muscle function (e.g., grip strength, peak plantarflexion contractility torque) and mass were assessed for correlations with physiological measures (e.g., indices of NMJ transmission). Other outcomes also included plantarflexion muscle contractility tetanic torque fade during 1-s trains of stimulation as well as gastrocnemius motor unit size and number. Profiling NMJ function in aged rats identified significant declines in NMJ transmission stability and reliability. Further, NMJ deficits were tightly correlated with hindlimb grip strength, gastrocnemius muscle weight, loss of peak contractility torque, degree of tetanic fade, and motor unit loss. Thus, these findings provide direct evidence for NMJ dysfunction as a potential mechanism of age-related muscle dysfunction pathogenesis and severity. These findings also suggest that NMJ transmission modulation may serve as a target for therapeutic development for age-related loss of physical function.


Assuntos
Debilidade Muscular , Junção Neuromuscular , Animais , Eletromiografia , Ratos , Ratos Endogâmicos F344 , Reprodutibilidade dos Testes
12.
Elife ; 102021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33904400

RESUMO

In addition to the hallmark muscle stiffness, patients with recessive myotonia congenita (Becker disease) experience debilitating bouts of transient weakness that remain poorly understood despite years of study. We performed intracellular recordings from muscle of both genetic and pharmacologic mouse models of Becker disease to identify the mechanism underlying transient weakness. Our recordings reveal transient depolarizations (plateau potentials) of the membrane potential to -25 to -35 mV in the genetic and pharmacologic models of Becker disease. Both Na+ and Ca2+ currents contribute to plateau potentials. Na+ persistent inward current (NaPIC) through NaV1.4 channels is the key trigger of plateau potentials and current through CaV1.1 Ca2+ channels contributes to the duration of the plateau. Inhibiting NaPIC with ranolazine prevents the development of plateau potentials and eliminates transient weakness in vivo. These data suggest that targeting NaPIC may be an effective treatment to prevent transient weakness in myotonia congenita.


Myotonia is a neuromuscular condition that causes problems with the relaxation of muscles following voluntary movements. One type of myotonia is Becker disease, also called recessive myotonia congenita. This is a genetic condition that causes muscle stiffness as a result of involuntary muscle activity. Patients may also suffer transient weakness for a few seconds or as long as several minutes after initiating a movement. The cause of these bouts of temporary weakness is still unclear, but there are hints that it could be linked to the muscle losing its excitability, the ability to respond to the stimuli that make it contract. However, this is at odds with findings that show that muscles in Becker disease are hyperexcitable. Muscle excitability depends on the presence of different concentrations of charged ions (positively charged sodium, calcium and potassium ions and negatively charged chloride ions) inside and outside of each muscle cells. These different concentrations of ions create an electric potential across the cell membrane, also called the 'membrane potential'. When a muscle cell gets stimulated, proteins on the cell membrane known as ion channels open. This allows the flow of ions between the inside and the outside of the cell, which causes an electrical current that triggers muscle contraction. To better understand the causes behind this muscle weakness, Myers et al. used mice that had either been genetically manipulated or given drugs to mimic Becker disease. By measuring both muscle force and the electrical currents that drive contraction, Myers et al. found that the mechanism underlying post-movement weakness involved a transient change in the concentrations of positively charged ions inside and outside the cells. Further experiments showed that proteins that regulate the passage of both sodium and calcium in and out of the cell ­ called sodium and calcium channels ­ contributed to this change in concentration. In addition, Myers et al. discovered that using a drug called ranolazine to stop sodium ions from entering the cell eliminated transient weakness in live mice. These findings suggest that in Becker disease, muscles cycle rapidly between being hyperexcited or not able to be excited, and that targeting the flow of sodium ions into the cell could be an effective treatment to prevent transient weakness in myotonia congenita. This study paves the way towards the development of new therapies to treat Becker disease as well as other muscle ion channel diseases with transient weakness such as periodic paralysis.


Assuntos
Potenciais da Membrana/fisiologia , Miotonia Congênita/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Miotonia Congênita/diagnóstico , Miotonia Congênita/genética , Sódio/fisiologia
13.
J Gen Physiol ; 153(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33683318

RESUMO

Huntington's disease (HD) is a fatal and progressive condition with severe debilitating motor defects and muscle weakness. Although classically recognized as a neurodegenerative disorder, there is increasing evidence of cell autonomous toxicity in skeletal muscle. We recently demonstrated that skeletal muscle fibers from the R6/2 model mouse of HD have a decrease in specific membrane capacitance, suggesting a loss of transverse tubule (t-tubule) membrane in R6/2 muscle. A previous report also indicated that Cav1.1 current was reduced in R6/2 skeletal muscle, suggesting defects in excitation-contraction (EC) coupling. Thus, we hypothesized that a loss and/or disruption of the skeletal muscle t-tubule system contributes to changes in EC coupling in R6/2 skeletal muscle. We used live-cell imaging with multiphoton confocal microscopy and transmission electron microscopy to assess the t-tubule architecture in late-stage R6/2 muscle and found no significant differences in the t-tubule system density, regularity, or integrity. However, electron microscopy images revealed that the cross-sectional area of t-tubules at the triad were 25% smaller in R6/2 compared with age-matched control skeletal muscle. Computer simulation revealed that the resulting decrease in the R6/2 t-tubule luminal conductance contributed to, but did not fully explain, the reduced R6/2 membrane capacitance. Analyses of bridging integrator-1 (Bin1), which plays a primary role in t-tubule formation, revealed decreased Bin1 protein levels and aberrant splicing of Bin1 mRNA in R6/2 muscle. Additionally, the distance between the t-tubule and sarcoplasmic reticulum was wider in R6/2 compared with control muscle, which was associated with a decrease in junctophilin 1 and 2 mRNA levels. Altogether, these findings can help explain dysregulated EC coupling and motor impairment in Huntington's disease.


Assuntos
Doença de Huntington , Animais , Simulação por Computador , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Fibras Musculares Esqueléticas , Músculo Esquelético
14.
Nat Commun ; 11(1): 4510, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908143

RESUMO

With human median lifespan extending into the 80s in many developed countries, the societal burden of age-related muscle loss (sarcopenia) is increasing. mTORC1 promotes skeletal muscle hypertrophy, but also drives organismal aging. Here, we address the question of whether mTORC1 activation or suppression is beneficial for skeletal muscle aging. We demonstrate that chronic mTORC1 inhibition with rapamycin is overwhelmingly, but not entirely, positive for aging mouse skeletal muscle, while genetic, muscle fiber-specific activation of mTORC1 is sufficient to induce molecular signatures of sarcopenia. Through integration of comprehensive physiological and extensive gene expression profiling in young and old mice, and following genetic activation or pharmacological inhibition of mTORC1, we establish the phenotypically-backed, mTORC1-focused, multi-muscle gene expression atlas, SarcoAtlas (https://sarcoatlas.scicore.unibas.ch/), as a user-friendly gene discovery tool. We uncover inter-muscle divergence in the primary drivers of sarcopenia and identify the neuromuscular junction as a focal point of mTORC1-driven muscle aging.


Assuntos
Envelhecimento/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fibras Musculares Esqueléticas/patologia , Junção Neuromuscular/patologia , Sarcopenia/patologia , Envelhecimento/efeitos dos fármacos , Animais , Linhagem Celular , Modelos Animais de Doenças , Eletromiografia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Microdissecção e Captura a Laser , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Mioblastos , Junção Neuromuscular/efeitos dos fármacos , Técnicas de Patch-Clamp , RNA-Seq , Sarcopenia/genética , Sarcopenia/fisiopatologia , Sarcopenia/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sirolimo/administração & dosagem
15.
Exp Neurol ; 331: 113354, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32511953

RESUMO

Chemotherapy-induced sensorimotor disabilities, including gait and balance disorders, as well as physical fatigue often persist for months and sometimes years into disease free survival from cancer. While associated with impaired sensory function, chronic sensorimotor disorders might also depend on chemotherapy-induced defects in other neuron types. In this report, we extend consideration to motoneurons, which, if chronically impaired, would necessarily degrade movement behavior. The present study was undertaken to determine whether motoneurons qualify as candidate contributors to chronic sensorimotor disability independently from sensory impairment. We tested this possibility in vivo from rats 5 weeks following human-scaled treatment with one of the platinum-based compounds, oxaliplatin, widely used in chemotherapy for a variety of cancers. Action potential firing of spinal motoneurons responding to different fixed levels of electrode-current injection was measured in order to assess the neurons' intrinsic capacity for stimulus encoding. The encoding of stimulus duration and intensity corroborated in untreated control rats was severely degraded in oxaliplatin treated rats, in which motoneurons invariably exhibited erratic firing that was unsustained, unpredictable from one stimulus trial to the next, and unresponsive to changes in current strength. Direct measurements of interspike oscillations in membrane voltage combined with computer modeling pointed to aberrations in subthreshold conductances as a plausible contributor to impaired firing behavior. These findings authenticate impaired spike encoding as a candidate contributor to, in the case of motoneurons, deficits in mobility and fatigue. Aberrant firing also becomes a deficit worthy of testing in other CNS neurons as a potential contributor to perceptual and cognitive disorders induced by chemotherapy in patients.


Assuntos
Antineoplásicos/toxicidade , Neurônios Motores/efeitos dos fármacos , Oxaliplatina/toxicidade , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiopatologia , Animais , Simulação por Computador , Feminino , Modelos Neurológicos , Neurônios Motores/fisiologia , Ratos , Ratos Wistar
16.
Am J Physiol Cell Physiol ; 319(1): C218-C232, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432924

RESUMO

Huntington's disease (HD) patients suffer from progressive and debilitating motor dysfunction for which only palliative treatment is currently available. Previously, we discovered reduced skeletal muscle Cl- channel (ClC-1) and inwardly rectifying K+ channel (Kir) currents in R6/2 HD transgenic mice. To further investigate the role of ClC-1 and Kir currents in HD skeletal muscle pathology, we measured the effect of reduced ClC-1 and Kir currents on action potential (AP) repetitive firing in R6/2 mice using a two-electrode current clamp. We found that R6/2 APs had a significantly lower peak amplitude, depolarized maximum repolarization, and prolonged decay time compared with wild type (WT). Of these differences, only the maximum repolarization was accounted for by the reduction in ClC-1 and Kir currents, indicating the presence of additional ion channel defects. We found that both KV1.5 and KV3.4 mRNA levels were significantly reduced in R6/2 skeletal muscle compared with WT, which explains the prolonged decay time of R6/2 APs. Overall, we found that APs in WT and R6/2 muscle significantly and progressively change during activity to maintain peak amplitude despite buildup of Na+ channel inactivation. Even with this resilience, the persistently reduced peak amplitude of R6/2 APs is expected to result in earlier fatigue and may help explain the motor impersistence experienced by HD patients. This work lays the foundation to link electrical changes to force generation defects in R6/2 HD mice and to examine the regulatory events controlling APs in WT muscle.


Assuntos
Potenciais de Ação/fisiologia , Modelos Animais de Doenças , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Músculo Esquelético/fisiopatologia , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos
17.
Ann Neurol ; 88(2): 297-308, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32418267

RESUMO

OBJECTIVE: Myotonia is caused by involuntary firing of skeletal muscle action potentials and causes debilitating stiffness. Current treatments are insufficiently efficacious and associated with side effects. Myotonia can be triggered by voluntary movement (electrically induced myotonia) or percussion (mechanically induced myotonia). Whether distinct molecular mechanisms underlie these triggers is unknown. Our goal was to identify ion channels involved in mechanically induced myotonia and to evaluate block of the channels involved as a novel approach to therapy. METHODS: We developed a novel system to enable study of mechanically induced myotonia using both genetic and pharmacologic mouse models of myotonia congenita. We extended ex vivo studies of excitability to in vivo studies of muscle stiffness. RESULTS: As previous work suggests activation of transient receptor potential vanilloid 4 (TRPV4) channels by mechanical stimuli in muscle, we examined the role of this cation channel. Mechanically induced myotonia was markedly suppressed in TRPV4-null muscles and in muscles treated with TRPV4 small molecule antagonists. The suppression of mechanically induced myotonia occurred without altering intrinsic muscle excitability, such that myotonia triggered by firing of action potentials (electrically induced myotonia) was unaffected. When injected intraperitoneally, TRPV4 antagonists lessened the severity of myotonia in vivo by approximately 80%. INTERPRETATION: These data demonstrate that there are distinct molecular mechanisms triggering electrically induced and mechanically induced myotonia. Our data indicates that activation of TRPV4 during muscle contraction plays an important role in triggering myotonia in vivo. Elimination of mechanically induced myotonia by TRPV4 inhibition offers a new approach to treating myotonia. ANN NEUROL 2020;88:297-308.


Assuntos
Contração Isométrica/fisiologia , Morfolinas/farmacologia , Miotonia Congênita/genética , Miotonia Congênita/metabolismo , Pirróis/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/deficiência , Animais , Antracenos/farmacologia , Contração Isométrica/efeitos dos fármacos , Camundongos , Camundongos Knockout , Morfolinas/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Miotonia Congênita/prevenção & controle , Pirróis/uso terapêutico
18.
J Gen Physiol ; 152(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32243496

RESUMO

Mice lacking functional large-conductance voltage- and Ca2+-activated K+ channels (BK channels) are viable but have motor deficits including ataxia and weakness. The cause of weakness is unknown. In this study, we discovered, in vivo, that skeletal muscle in mice lacking BK channels (BK-/-) was weak in response to nerve stimulation but not to direct muscle stimulation, suggesting a failure of neuromuscular transmission. Voltage-clamp studies of the BK-/- neuromuscular junction (NMJ) revealed a reduction in evoked endplate current amplitude and the frequency of spontaneous vesicle release compared with WT littermates. Responses to 50-Hz stimulation indicated a reduced probability of vesicle release in BK-/- mice, suggestive of lower presynaptic Ca2+ entry. Pharmacological block of BK channels in WT NMJs did not affect NMJ function, surprisingly suggesting that the reduced vesicle release in BK-/- NMJs was not due to loss of BK channel-mediated K+ current. Possible explanations for our data include an effect of BK channels on development of the NMJ, a role for BK channels in regulating presynaptic Ca2+ current or the effectiveness of Ca2+ in triggering release. Consistent with reduced Ca2+ entry or effectiveness of Ca2+ in triggering release, use of 3,4-diaminopyridine to widen action potentials normalized evoked release in BK-/- mice to WT levels. Intraperitoneal application of 3,4-diaminopyridine fully restored in vivo nerve-stimulated muscle force in BK-/- mice. Our work demonstrates that mice lacking BK channels have weakness due to a defect in vesicle release at the NMJ.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Músculo Esquelético/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Camundongos , Músculo Esquelético/efeitos dos fármacos , Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
19.
Ann Neurol ; 87(2): 175-183, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31725924

RESUMO

It is generally thought that muscle excitability is almost exclusively controlled by currents responsible for generation of action potentials. We propose that smaller ion channel currents that contribute to setting the resting potential and to subthreshold fluctuations in membrane potential can also modulate excitability in important ways. These channels open at voltages more negative than the action potential threshold and are thus termed subthreshold currents. As subthreshold currents are orders of magnitude smaller than the currents responsible for the action potential, they are hard to identify and easily overlooked. Discovery of their importance in regulation of excitability opens new avenues for improved therapy for muscle channelopathies and diseases of the neuromuscular junction. ANN NEUROL 2020;87:175-183.


Assuntos
Canalopatias/fisiopatologia , Canais Iônicos/fisiologia , Músculos/fisiologia , Miotonia/fisiopatologia , Animais , Humanos
20.
Neurobiol Aging ; 86: 182-190, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31866157

RESUMO

Neurodegeneration has increasingly been considered an important factor in the pathogenesis of sarcopenia or age-related loss of muscle mass and strength. Experiments were designed to investigate the fidelity of neuromuscular junction (NMJ) transmission across the lifespan in hindlimb muscles of male and female C57BL/6J mice (at 12, 20, 24, 27, and 29 months of age). Single-fiber electromyography recordings demonstrated abrupt onset of NMJ transmission failure at 27 months of age. Failed NMJ transmission was a later onset phenotype as compared with other assessments of motor unit numbers, muscle contractility, and frailty which showed alterations at 20 months of age. Ex vivo NMJ recordings demonstrated no reduction of endplate current amplitude in support of reduced muscle fiber excitability as the cause of failed NMJ transmission in aged mice. Improved understanding of age-related neurodegeneration will likely have important implications in designing novel therapeutic interventions specific for different stages of sarcopenia. Our findings suggest reduced muscle excitability may be a potential therapeutic target for improvement of physical function in older adults.


Assuntos
Envelhecimento/fisiologia , Junção Neuromuscular/fisiopatologia , Fenótipo , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Contração Muscular , Músculo Esquelético/fisiopatologia , Sarcopenia/fisiopatologia , Sarcopenia/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...